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ABSTRACT

Fluorinated Materials for Air-stable and Moisture-resistant Flexible Optoelectronics

Report Title

This project provides a new materials solution for air-stable moisture-resistant flexible optoelectronics for smart battlewear. Major scientific 
contributions of this project are: 1) developed new synthetic methods for preparing perfluoroalkylated aromatic compounds that are key to 
the organic semiconductor industrials; 2) discovered the threshold of aromatic perfluoroalkylation that can make air-stable n-type organic 
semiconductor materials; 3) revealed a fundamental understanding that leads to controllably formation of solid state materials with desired 
structure, important for improving charge transport in organic semiconductor devices; 4) elucidate the structure-function relationship of n-
type organic semiconductor materials through both experimental and computational approaches; and 5) discovered a new experimental 
approach to lead to highly photochemically stable organic semiconductor materials which is key to the practical application of flexible 
organic solar cells. The success of this project brought foremost benefits to national defense applications including: 1) the optoelectronic 
devices (OSCs and OLEDs) build with these robust materials will be able to operate under extreme environmental condition; 2) providing 
new materials for power generation (flexible solar cells) and storage in the battle field for individual warrior where other form of power 
supply and storage is not available.
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Scientific Progress and Accomplishments 
 
 

Fluorinated Materials for Air-stable and Moisture-resistant Flexible 
Optoelectronics 

 
 

Haoran Sun, 
Department of Chemistry, University of South Dakota, Vermillion, SD, 57069 

 
 
 

Abstract 

 

This project provides a new solution for producing air-stable moisture-resistant flexible 
optoelectronics for smart battlewear. The major scientific contributions of this project are: 1) 
developed new synthetic methods for preparing perfluoroalkylated aromatic materials that are key to the 
organic semiconductor industrials; 2) discovered the critical threshold of the degree of aromatic 
perfluoroalkylation that can make air-stable n-type organic semiconductor materials; 3) revealed a 
fundamental understanding that leads to controllably formation of solid state materials with desired 
structure, important for improving charge transport in organic semiconductor devices; 4) elucidate the 
structure-function relationship of n-type organic semiconductor materials through both experimental and 
computational approaches; and 5) discovered a new experimental approach to lead to highly 
photochemically stable organic semiconductor materials which is key to the practical application of 
flexible organic solar cells. The success of this project brought foremost benefits to national defense 
applications including: 1) the optoelectronic devices (OSCs and OLEDs) build with these robust 
fluorinated materials will be able to operate under extreme environmental condition; 2) providing new 
materials for power generation (i.e. flexible solar cells) and storage in the battle field for individual 
warrior where other form of power supply and storage is not available. The long term impact of this 
project to the scientific community and national defense applications includes 1) the development of new 
type of organic semiconductor materials; 2) the creation of research infrastructure for flexible 
optoelectronics for defense applications; and 3) work force development for national defense R&D. 
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Statement of the problem studied 

 

This project addresses the national defense’s critical needs in developing flexible optoelectronics for 
next generation battlewear for warfighters. Our research results proofed that the unique properties of 
fluorinated materials including high thermal and photochemical stability, resistance to oxidation and 
moisture permeation, in fact, benefit the development of a new generation of flexible optoelectronics 
through the discovery of new n-type organic semiconductor materials. Furthermore, the electronic and 
optical properties of these new optoelectronic materials are found to be tunable over large range by 
aromatic perfluoroalkylation. Aromatic perfluoroalkylation further provides excellent opportunity to 
discover novel functional materials for military applications.  The success of this research project also 
provided necessary workforce development for research and development needs in national defense 
through significant training for students at all levels in organic semiconductor and optoelectronic fields. 
 

Background on scientific problems and strategies: The discovery of high performance air-stable n-
type organic semiconductor materials is critical for many electronic and optoelectronic device 
applications.1 Air-stability (including moisture-resistance) and electron mobility are two key factors that 
currently limit the wide deployment of n-type organic semiconductor devices including organic field 
effect transistors (OFETs)2, organic solar cells (OSCs)3, and organic light emitting diodes (OLEDs)4. 
Despite great progress in p-type organic semiconductor research3a,5, developing high performance air-
stable n-type organic semiconductor materials remains a significant obstacle.6 Air-stability of n-type 
organic semiconductor devices is thermodynamically determined by the difference in oxygen reduction 
potentials and the first reduction potential of the corresponding semiconductor materials (in many cases, 
researchers also use electron affinities (EAs) or LUMO energies to estimate the air-stability of these 
materials).1e,7 The fundamental physicochemical reason behind the air (oxygen, moisture) instability of 
those n-type organic semiconductor devices is that oxygen, together with water (as a proton source), 
oxidizes the n-channel semiconductor transporteran electron in semiconductor terms or a radical anion 
in chemistry termswhile the device is in operation.8  In principle, if an n-type organic semiconductor 
material’s first reduction potential is higher than the oxygen reduction potentials, the device constructed 
with this material will be thermodynamically air-stable.9  

 
One strategy to making air-stable n-type semiconductors is addition of electron-withdrawing 

substituents onto aromatic rings to shift the first reduction potential to a more positive value than the 
oxygen reduction potentials.10  The other strategy is to avoid water (a proton source) involvement, forcing 
oxygen to only go through a one-electron reduction which has a much lower reduction potential. Thus, 
fewer electron-withdrawing substituents are needed to shift the first reduction potential more positive than 
the oxygen reduction potential.  In principle, both strategies should be able to generate air-stable n-type 
organic semiconductors; however the former strategy possesses significant synthetic burdens in practice 
and may be impossible to overcome because of the challenges of adding multiple electron withdrawing 
groups. F, CN, NO2, COOR, CONR2, CF3, CnF2n+1 are commonly used in making n-type semiconductors, 
with some of them being air-stable.1h,5a,11 While direct fluorination on the aromatic ring (sp2-carbon) only 
introduces a moderate electron-withdrawing effect (p value for fluorine is 0.06)12, in contrast, 
perfluoroalkyl substitution introduces much greater electron-withdrawing ability (p value for CF2CF3 is 
0.52)12. Furthermore, the perfluroalkyl substitutes possess superhydrophobicity13, oleophobicity13, and 
fluorophilicity14 which could potentially increase the barrier of electron transfer (ET) between oxygen and 
semiconductor materials to provide kinetic stability of the semiconductor devices.15 

 
In this project, through both computational and experimental approaches, we successfully discovered 

and developed a series of perfluoroalkylated aromatics that chemically and photochemically stable and 
with controllable solid state structure. The very short  distances we discovered in N- and S-containing 
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perfluoroalkylated aromatics lead to excellent molecular orbital overlapping between adjacent molecules 
in the solid state. This built a sound materials foundation for high efficient organic semiconductor 
devices.  

 
 

Summary of the most important results 
 
1). Discovered the threshold of aromatic perfluoroalkylation that can make air-stable n-type 
organic semiconductor materials (H. Sun et al J. Phys. Chem. A 2012).7c 
 

A systematic computational study from our group has demonstrated that trifluoromethylation can 
modulate the first reduction potential over a very large range, leading to thermodynamically air-stable 
organic semiconductors. Further, perfluoroalkyl groups, with similar electron-withdrawing ability but 
better superhydrophobicity and oleophobicity compared to trifluormethyl, can lead to a synthetically 
practical route to air-stable organic semiconductors as shown in Figure 1. Because the perfluoroalkyl 
chains could form a barrier to stop water (a proton source) from attacking the aromatic core, the radical 
anion of anthracene with four perfluoroalkyl groups could become thermodynamically air-stable since its 
first reduction potential is more positive than the one-electron reduction potential of oxygen. 
 

Figure 1. Estimated reduction potentials 
of various CF3 substituted 
anthracenes.7c 

 
 
 
 
 
 
 

 
2). Discovered solution process-able and highly photochemical stable organic semiconductor 
materials (H. Sun et. al. Chem. Comm. 2012).16 
 

The excellent fluorophilicity and oleophobicity of perfluoroalkyl groups provides a route for 
orthogonal solution-processing of perfluoroalkyl functionalized organic semiconductor materials.17 
Perfluoroalkylated organic materials have poor solubility in hydrocarbon-based organic solvents (both 
polar and non-polar solvents). However, they are soluble in heavily fluorinated solvents such as 3M 
Novec engineering fluids HFE-7100®, HFE-7200®, and HFE-7500®.5s,17c For example, tetra-
perfluorooctyl anthracene is almost insoluble in chloroform and insoluble in DMSO and DMF, but it is 
very soluble in HFE-7200 up to 10 mg/ml at room temperature.16 This significant solubility change from 
hydrocarbon-based solvents to heavily fluorinated solvents provides us with an excellent opportunity for 
orthogonal solution processing of perfluoroalkylated organic semiconducting materials.17b The materials 
are also highly photochemical stable (Figure 2). After perfluoroalkylation and use of fluorinated solvents, 
the photostability of aromatics tested in our lab increases over thousand times. 
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Figure 2. Discovery of solution process-able and photochemical stable organic semiconductor materials. 
 
3). Control material solid state structure through modulating molecular structure and 
perfluoroalklation (J. Mottishaw et.al. J. Phys. Chem. C. 2013; H. Sun et.al. Cryst. Growth & Design, 
2012)18 
 

In addition to modulating HOMO, LUMO, band-gap, IPs, EAs, and inner sphere reorganization 
energy parameters of aromatic compounds at the molecular level, we found that perfluoroalkylation 
further affects molecular packing in solid state. Our recent results show that perfluoroalkylation of 
aromatics is a promising strategy to form  stacked lamellar structure in the solid-state.18a As shown in 
Figure 3, we observed that the formation of lamellar  stacked structure occurred after 
perfluoroalklylation of bipyridine molecule. In solid state structures, perfluoroalkyl groups stick together, 
similar to what has been observed in perfluoroalkyl phosphate compounds reported by Baker’s group 
recently.19 This, perhaps, is not a surprise when we compare this fluoroalkyl chain aggregation behavior 
to the phase separation between fluorocarbon and hydrocarbon.20 Indeed, we could call this fluorocarbon 
chains separation from hydrocarbon aromatics as “Phase separation at a molecular level”.  This 
observation is consistent with available crystal structural data and can be understood from ab initio 
quantum mechanical calculations of non-covalent intermolecular interactions between fluorocarbons and 
hydrocarbons.21 The observed short  distance is also in line with our recent computational results, that 
interaction energy between adjacent aromatic rings increases with trifluoromethylation, which causes 
increased quadrupole moment of the molecule.18b Thus, preferential formation of  stacked structure 
over T-shaped molecular packing can be realized (Figure 3). 

 

         
 
Figure 3. Crystal engineering through aromatic perfluoroalkylation (left).18a Picture on the right: 
computational results show preferential  stacked interaction over T-shaped interaction.18b 
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4). Discover new organic semiconductor materials with very short  distance in the solid state (A. 
Putta, et. al. Cryst. Growth & Design, 2013)22 
 

N- and S-containing aromatics are widely studied in literature ranging from ligands for catalytic 
reactions to pharmaceutically active compounds.23 Many N-containing aromatics are used as air-stable n-
type semiconductors.24 Heterocycles containing sulfur atoms have often been used as p-type 
semiconductor materials because of the electron-rich nature of the sulfur stabilizing the radical cation.25  
Heterocycles containing both S and N, such as benzothiazole, become the basic chromophore core for 
polymer-based semiconductor materials.26 Introduction of N- and S-containing rings into aromatic 
compounds leads to significant changes in HOMO and LUMO energies, IPs, EAs, and charge distribution 
as reflected on the electrostatic surface potential maps (Figure 4). The introduction of N and S brings up 
two benefits: one is to increase the EAs leading to air-stable organic semiconductor materials; the other is 
to change the charge distribution pattern along the aromatic  surface, which leads to potentially stronger 
electrostatic interactions (both quadrupole-quadrupole and dispersion interactions).  
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CN
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Figure 4. Comparison of electron affinities (EAs) and ESP maps of various N- and S-containing 
heterocycles with similar frames but different heteroatoms and substitutions on the rings.  
 

We further found that the degree of perfluoroalkylation is critical to the formation of  stacked 
lamellar structure when comparing the structures of mono-perfluorobutyl and bis-perfluorobutyl 
benzophenazines. Though mono-perfluoroalkylation provides  stacked structure in the solid state, it 
forms T-shaped packing as well because of lack of sufficient Csp3-F···F-Csp3 interactions, which could 
steer the molecule packing orientation (see Figure 5). Bis-perfluorobutyl substitution leads to anti-parallel 
 stacking with no T-shaped interaction in the crystal structure, though it is not a perfect flat lamellar 
structure. This structure changing trend suggests that both an electron-steric effect and Csp3-F···F-Csp3 
attractive interactions play a role in designing materials with  stacked lamellar structure. Furthermore, 
by changing the length of the perfluoroalkyl chain, we observed a fine tuning effect on  stacking 
distance.  

 
When sulfur atoms are introduced into the aromatic ring with similar shape to benzophenazine, perfect 

 stacked lamellar structures are formed with a  distance of 3.247 Å. Here, though the radius of the 
sulfur atom is larger than that of the carbon and nitrogen atoms, the softness of sulfur atom provides 
better polarizability. When the S atom is close to the electronegative nitrogen, induced-polarization 
interaction (dispersion force) between the two adjacent molecules further strengthens  stacking.  Our 
DFT-D calculation (B97D/TVZ level of theory) shows that this sulfur containing compound has over 2 
kcal/mol more stabilization energy than that of non-sulfur containing analog compound. This clearly 
demonstrates the benefit of introducing sulfur into the aromatic ring to modulating crystal packing. 
Computational results demonstrate MO overlapping between neighboring aromatic rings, indicating 
potential high charge mobility along the stacking axes in the solid state (Figure 7). Charge mobility 
measurement using bottom-gate and bottom-contact OFET testing plat form is under way in our lab. 
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Figure 5. Molecular packing of non-substituted (left), mono-perfluorobutyl substituted (middle), and bis-
perfluorobutyl substituted benzophenazines. Dotted blue lines indicate short contact between adjacent 
molecules. 
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Figure 6. Molecular orbital overlapping in dimer molecules of bis-perfluorobutylated dithiophenazine. 
 
 
 In summary, this project provided solid fundamental understanding to the questions of what type of 
organic semiconductor materials are suitable for developing air-stable and moisture-resistant flexible 
optoelectronics. This fundamental solution built a profound basis for the future development of new 
generation of organic semiconductor devices including but not limit to organic solar cells, OLEDs, 
OFETs, and electrooptics. 
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